A note on the circular chromatic number of circular perfect planar graphs

نویسنده

  • Arnaud Pêcher
چکیده

Computing the circular chromatic number of a given planar graph is NP-complete, as it is already NP-complete to compute its chromatic number. In this note, we prove that the circular clique number of a planar graph, and therefore the circular chromatic number of a circular perfect graph, is computable in O(ne) time; outerplanar graphs are circular perfect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Claw-free circular-perfect graphs

The circular chromatic number of a graph is a well-studied refinement of the chromatic number. Circular-perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This paper studies claw-free circular-perfect graphs. First we prove that ifG is a connected claw-free circular-perfect graph with χ(G) > ω(G), then min{α(G), ω(G)} = 2. We use this resu...

متن کامل

Circular Chromatic Number of Planar Graphs of Large Odd Girth

It was conjectured by Jaeger that 4k-edge connected graphs admit a (2k + 1, k)-flow. The restriction of this conjecture to planar graphs is equivalent to the statement that planar graphs of girth at least 4k have circular chromatic number at most 2 + 1 k . Even this restricted version of Jaeger’s conjecture is largely open. The k = 1 case is the well-known Grötzsch 3-colour theorem. This paper ...

متن کامل

Clique and chromatic number of circular-perfect graphs

A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981). Circular-perfect graphs form a well-studied superclass of perfect graphs. We extend the above result for perfect graphs by showing that clique and chromatic number of a circularperfect graph are computable in polynomial time...

متن کامل

On classes of minimal circular-imperfect graphs

Circular-perfect graphs form a natural superclass of perfect graphs: on the one hand due to their definition by means of a more general coloring concept, on the other hand as an important class of χ-bound graphs with the smallest non-trivial χ-binding function χ(G) ≤ ω(G) + 1. The Strong Perfect Graph Conjecture, recently settled by Chudnovsky et al. [4], provides a characterization of perfect ...

متن کامل

Circular perfect graphs

For 1 ≤ d ≤ k, let Kk/d be the graph with vertices 0, 1, · · · , k − 1, in which i ∼ j if d ≤ |i − j| ≤ k − d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003